Selected publications
Tuong ZK et al. Resolving the immune landscape of human prostate at a single-cell level in health and cancer. Cell Reports 2021 Dec 21;37(12):110132.
Liu S et al. Discovery of PTN as a serum-based biomarker of pro-metastatic prostate cancer. Br J Cancer. 2021 Mar;124(5):896-900.
Heider et al. ctDNA detection by personalised assays in early-stage NSCLC. medRxiv 2021.06.01.21258171; doi: https://doi.org/10.1101/2021.06.01.21258171
Wan et al (joint Senior Author). ctDNA monitoring using patient-specific sequencing and integration of variant reads. Sci Transl Med. 2020 Jun 17;12(548):eaaz8084.
ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature. 2020 Feb;578(7793):82-93.
Gnanapragasam VJ, Barrett T, Massie C, Pacey S, Warren A. Using prognosis to guide early detection and treatment selection in non-metastatic prostate cancer. BJU Int. 2019 Apr;123(4):562-563.
Mouliere F et al. Enhanced detection of circulating tumor DNA by fragment size analysis. Sci Transl Med. 2018 Nov 7;10(466):eaat4921.
Wan JC, Massie C et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA.
Nat Rev Cancer. 2017;17(4):223-238.
Massie CE, Mills IG, Lynch AG. The importance of DNA methylation in prostate cancer development.
JSBMB 2016. pii: S0960-0760(16)30105-4.
Prostate ICGC UK Group. The Genetic Phylogeny of Multifocal Prostate Cancer.
Nature Genetics 2015; 47(4):367:72.
Massie CE, et al. HES5 silencing is an early and recurrent change in prostate tumourigenesis.
ERC. 2015; 22(2):131-44.
Liu S et al. Discovery of PTN as a serum-based biomarker of pro-metastatic prostate cancer. Br J Cancer. 2021 Mar;124(5):896-900.
Heider et al. ctDNA detection by personalised assays in early-stage NSCLC. medRxiv 2021.06.01.21258171; doi: https://doi.org/10.1101/2021.06.01.21258171
Wan et al (joint Senior Author). ctDNA monitoring using patient-specific sequencing and integration of variant reads. Sci Transl Med. 2020 Jun 17;12(548):eaaz8084.
ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature. 2020 Feb;578(7793):82-93.
Gnanapragasam VJ, Barrett T, Massie C, Pacey S, Warren A. Using prognosis to guide early detection and treatment selection in non-metastatic prostate cancer. BJU Int. 2019 Apr;123(4):562-563.
Mouliere F et al. Enhanced detection of circulating tumor DNA by fragment size analysis. Sci Transl Med. 2018 Nov 7;10(466):eaat4921.
Wan JC, Massie C et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA.
Nat Rev Cancer. 2017;17(4):223-238.
Massie CE, Mills IG, Lynch AG. The importance of DNA methylation in prostate cancer development.
JSBMB 2016. pii: S0960-0760(16)30105-4.
Prostate ICGC UK Group. The Genetic Phylogeny of Multifocal Prostate Cancer.
Nature Genetics 2015; 47(4):367:72.
Massie CE, et al. HES5 silencing is an early and recurrent change in prostate tumourigenesis.
ERC. 2015; 22(2):131-44.
Group Member's pubications
Liu S et al. Discovery of PTN as a serum-based biomarker of pro-metastatic prostate cancer. Br J Cancer. 2021 Mar;124(5):896-900.
Heider et al. ctDNA detection by personalised assays in early-stage NSCLC. medRxiv 2021.06.01.21258171; doi: https://doi.org/10.1101/2021.06.01.21258171
Sciacovelli et al. Nitrogen partitioning between branched-chain amino acids and urea cycle enzymes sustains renal cancer progression. bioRxiv 2021.09.17.460635; doi: https://doi.org/10.1101/2021.09.17.460635
Brennan K et al. Development of a DNA Methylation-Based Diagnostic Signature to Distinguish Benign Oncocytoma From Renal Cell Carcinoma. JCO Precis Oncol. 2020 Sep 28;4:PO.20.00015.
Bailey MH et al. PCAWG Consortium. Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples. Nat Commun. 2020 Sep 21;11(1):4748. .
Li CH et al. PCAWG Consortium. Sex differences in oncogenic mutational processes. Nat Commun. 2020 Aug 28;11(1):4330.
Wan et al (joint Senior Author). ctDNA monitoring using patient-specific sequencing and integration of variant reads. Sci Transl Med. 2020 Jun 17;12(548):eaaz8084.
Tran MGB et al. Independence of HIF1a and androgen signaling pathways in prostate cancer. BMC Cancer. 2020 May 25;20(1):469.
Smith CG et al. Comprehensive characterization of cell-free tumor DNA in plasma and urine of patients with renal tumors. Genome Med. 2020 Feb 28;12(1):23.
ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature. 2020 Feb;578(7793):82-93.
Gnanapragasam VJ, Barrett T, Massie C, Pacey S, Warren A. Using prognosis to guide early detection and treatment selection in non-metastatic prostate cancer. BJU Int. 2019 Apr;123(4):562-563.
Mouliere F et al. Enhanced detection of circulating tumor DNA by fragment size analysis. Sci Transl Med. 2018 Nov 7;10(466):eaat4921.
Mair R et al. Measurement of Plasma Cell-Free Mitochondrial Tumor DNA Improves Detection of Glioblastoma in Patient-Derived Orthotopic Xenograft Models. Cancer Res. 2019 Jan 1;79(1):220-230.
Grinfeld J et al. Classification and Personalized Prognosis in Myeloproliferative Neoplasms. N Engl J Med. 2018 Oct 11;379(15):1416-1430.
Warren AY, Massie CE, et al. A reciprocal feedback between the PDZ binding kinase and androgen receptor drives prostate cancer. Oncogene. 2019 Feb;38(7):1136-1150.
Wedge DC et al. CRUK-ICGC Prostate Group (co-PI). Sequencing of prostate cancers identifies new cancer genes, routes of progression and drug targets. Nat Genet. 2018 May;50(5):682-692.
Nice FL, Massie CE, Klampfl T, Green AR. Determination of complex subclonal structures of hematological malignancies by multiplexed genotyping of blood progenitor colonies. Exp Hematol. 2018 Jan;57:60-64.e1.
Camacho N et al. CRUK-ICGC Prostate Group (co-PI). Appraising the relevance of DNA copy number loss and gain in prostate cancer using whole genome DNA sequence data. PLoS Genet. 2017 Sep 25;13(9):e1007001.
Smeets E, Lynch AG, Prekovic S, Van den Broeck T, Moris L, Helsen C, Joniau S, Claessens F, Massie CE.
The role of TET-mediated DNA hydroxymethylation in prostate cancer. Mol Cell Endocrinol 2017 pii: S0303-7207(17)30465-3.
Patel KM et al. Association Of Plasma And Urinary Mutant DNA With Clinical Outcomes In Muscle Invasive Bladder Cancer.
Sci Rep. 2017;7(1):5554.
Asim M et al. Synthetic lethality between androgen receptor signalling and the PARP pathway in prostate cancer.
Nat Commun. 2017; 8(1):374.
Camacho N et al. Appraising the relevance of DNA copy number loss and gain in prostate cancer using whole genome DNA sequence data. PLoS Genet. 2017;13(9):e1007001.
Mock A, Murphy S, Morris J, Marass F, Rosenfeld N, Massie C.
CVE: an R package for interactive variant prioritisation in precision oncology. BMC Med Genomics. 2017;10(1):37.
Massie CE, Mills IG, Lynch AG. The importance of DNA methylation in prostate cancer development.
J Steroid Biochem Mol Biol. 2016. pii: S0960-0760(16)30105-4.
Quandt D et al. Implementing liquid biopsies into clinical decision making for cancer immunotherapy. Oncotarget 2017;8(29):48507-48520.
Wan JC, Massie C et al. Liquid biopsies come of age: towards implementation of
circulating tumour DNA. Nat Rev Cancer. 2017;17(4):223-238.
Massie CE. Methods to Identify Chromatin-Bound Protein Complexes: From Genome-Wide to Locus-Specific Approaches.
Methods Mol Biol. 2016;1443:139-50.
Prostate ICGC UK Group. The evolutionary history of lethal metastatic prostate cancer.
Nature 2015; 520(7547):353-7.
Prostate ICGC UK Group. The Genetic Phylogeny of Multifocal Prostate Cancer.
Nature Genetics 2015; 47(4):367:72.
Massie CE, et al. HES5 silencing is an early and recurrent change in prostate tumourigenesis.
ERC. 2015; 22(2):131-44.
Asim M, Massie CE (joint first), et al. Choline Kinase Alpha as an Androgen Receptor Chaperone and Prostate Cancer Therapeutic Target.
J Natl Cancer Inst. 2015; 108(5).
Ortmann CA, Kent DG, et al. Effect of order on myeloproliferative neoplasms.
NEJM. 2015 372(7):601-12.
Shaw GL, et al. The Early Effects of Rapid Androgen Deprivation on Human Prostate Cancer.
Eur Urol. 2015 pii: S0302-2838(15)01076-3.
Ross-Adams H, Lamb AD, et al. Integration of copy number and transcriptomics provides risk stratification in prostate cancer.
EBioMedicine. 2015;2(9):1133-44.
Nangalia J, et al. DNMT3A mutations occur early or late in patients with myeloproliferative neoplasms and mutation order influences phenotype.
Haematologica. 2015;100(11):438-42.
Pertega-Gomes N, et al. Epigenetic and oncogenic regulation of SLC16A7 (MCT2) results in protein over-expression, impacting on signalling and cellular phenotypes in prostate cancer.
Oncotarget. 2015;6(25):21675-84.
Pertega-Gomes N, Felisbino S, Massie CE, et al. A glycolytic phenotype is associated with prostate cancer progression and aggressiveness.
J Pathol. 2015 Aug;236(4):517-30.
Chen E, Ahn JS, Massie CE, et al. JAK2V617F promotes replication fork stalling with disease-restricted impairment of the intra-S checkpoint response.
PNAS. 2014; 111(42):15190-5.
Ju YS, et al. Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer.
Elife. 2014 ;3. doi:10.7554/eLife.02935.
Tubio JM, et al. Mobile DNA in cancer. Extensive transduction of nonrepetitive DNA mediated by L1 retrotransposition in cancer genomes.
Science. 2014;345(6196):1251343.
Wong CC, et al. Inactivating CUX1 mutations promote tumorigenesis.
Nat Genet. 2014;46(1):33-8.
Godfrey AL, et al. Nongenetic stochastic expansion of JAK2V617F-homozygous subclones in polycythemia vera?
Blood. 2014;124(22):3332-4.
Zecchini V, et al. Nuclear ARRB1 induces pseudohypoxia and cellular metabolism reprogramming in prostate cancer.
EMBO J. 2014;33(12):1365-82.
Ramos-Montoya A, Lamb AD, et al. HES6 drives a critical AR transcriptional programme to induce castration-resistant prostate cancer through activation of an E2F1-mediated cell cycle network.
EMBO Mol Med. 2014;6(5):651-61.
Sharma NL, Massie CE (joint first), et al. The ETS family member GABPα modulates androgen receptor signalling and mediates an aggressive phenotype in prostate cancer.
Nucleic Acids Res. 2014;42(10):6256-69.
Wong CC, et al. Inactivating CUX1 mutations promote tumorigenesis.
Nat Genet. 2014;46(1):33-8.
Whitaker HC, et al. NAALADL2 is overexpressed in cancer and promotes a pro-migratory and pro-metastatic phenotype.
Oncogene. 2014;33(45):5274-87.
Lamb AD, Massie CE, Neal DE. The transcriptional programme of the androgen receptor (AR) in prostate cancer.
BJU Int. 2014;113(3):358-66.
Nangalia J, Massie CE (joint first), et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2.
NEJM. 2013 ;369(25):2391-405.
Sharma NL, Massie CE (joint first), et al. The androgen receptor induces a distinct transcriptional program in castration-resistant prostate cancer in man.
Cancer Cell. 2013;23(1):35-47.
Whitaker HC, et al. Peroxiredoxin-3 is overexpressed in prostate cancer and promotes cancer cell survival by protecting cells from oxidative stress.
B J Cancer. 2013;109(4):983-93.
Papaemmanuil E, et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts.
NEJM. 2011;365(15):1384-95.
Massie CE, et al. The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis.
EMBO J. 2011; 30(13):2719-33.
Massie CE, Mills IG. Global identification of androgen response elements.
Methods Mol Biol. 2011;776:255-73.
Ross-Innes CS, et al. Cooperative interaction between retinoic acid receptor-alpha and estrogen receptor in breast cancer.
Genes Dev. 2010 15;24(2):171-82.
Massie CE, Mills IG. Chromatin immunoprecipitation (ChIP) methodology and readouts.
Methods Mol Biol. 2009;505:123-37.
Attard G, Clark J, et al. Heterogeneity and clinical significance of ETV1 translocations in human prostate cancer.
Br J Cancer. 2008;99(2):314-20.
Massie CE, Mills IG. ChIPping away at gene regulation.
EMBO Rep. 2008; 9(4):337-43.
Vias M, Massie CE, et al . Pro-neural transcription factors as cancer markers.
BMC Med Genomics. 2008;1:17.
Ahmed AA, et al. The extracellular matrix protein TGFBI induces microtubule stabilization and sensitizes ovarian cancers to paclitaxel.
Cancer Cell. 2007; 12(6):514-27
Massie CE, et al. New androgen receptor genomic targets show an interaction with the ETS1 transcription factor.
EMBO Rep. 2007; 8(9):871-8.
Massie C, Mills IG. The developing role of receptors and adaptors.
Nat Rev Cancer. 2006; 6(5):403-9.
Stronach EA, et al. Identification of clinically relevant genes on chromosome 11 in a functional model of ovarian cancer tumor suppression.
Cancer Res. 2003;63(24):8648-55.
Cameron DA, Massie C, Kerr G, Leonard RC. Moderate neutropenia with adjuvant CMF confers improved survival in early breast cancer.
Br J Cancer. 2003; 89(10):1837-42.
Sellar GC, et al. OPCML at 11q25 is epigenetically inactivated and has tumor-suppressor function in epithelial ovarian cancer.
Nat Genet. 2003; 34(3):337-43.
Gourley C, Thornton C, Massie C, et al. Is there a relationship between HLA type and prognostic factors in breast cancer?
Anticancer Res. 2003;23(1B):633-8.
Heider et al. ctDNA detection by personalised assays in early-stage NSCLC. medRxiv 2021.06.01.21258171; doi: https://doi.org/10.1101/2021.06.01.21258171
Sciacovelli et al. Nitrogen partitioning between branched-chain amino acids and urea cycle enzymes sustains renal cancer progression. bioRxiv 2021.09.17.460635; doi: https://doi.org/10.1101/2021.09.17.460635
Brennan K et al. Development of a DNA Methylation-Based Diagnostic Signature to Distinguish Benign Oncocytoma From Renal Cell Carcinoma. JCO Precis Oncol. 2020 Sep 28;4:PO.20.00015.
Bailey MH et al. PCAWG Consortium. Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples. Nat Commun. 2020 Sep 21;11(1):4748. .
Li CH et al. PCAWG Consortium. Sex differences in oncogenic mutational processes. Nat Commun. 2020 Aug 28;11(1):4330.
Wan et al (joint Senior Author). ctDNA monitoring using patient-specific sequencing and integration of variant reads. Sci Transl Med. 2020 Jun 17;12(548):eaaz8084.
Tran MGB et al. Independence of HIF1a and androgen signaling pathways in prostate cancer. BMC Cancer. 2020 May 25;20(1):469.
Smith CG et al. Comprehensive characterization of cell-free tumor DNA in plasma and urine of patients with renal tumors. Genome Med. 2020 Feb 28;12(1):23.
ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature. 2020 Feb;578(7793):82-93.
Gnanapragasam VJ, Barrett T, Massie C, Pacey S, Warren A. Using prognosis to guide early detection and treatment selection in non-metastatic prostate cancer. BJU Int. 2019 Apr;123(4):562-563.
Mouliere F et al. Enhanced detection of circulating tumor DNA by fragment size analysis. Sci Transl Med. 2018 Nov 7;10(466):eaat4921.
Mair R et al. Measurement of Plasma Cell-Free Mitochondrial Tumor DNA Improves Detection of Glioblastoma in Patient-Derived Orthotopic Xenograft Models. Cancer Res. 2019 Jan 1;79(1):220-230.
Grinfeld J et al. Classification and Personalized Prognosis in Myeloproliferative Neoplasms. N Engl J Med. 2018 Oct 11;379(15):1416-1430.
Warren AY, Massie CE, et al. A reciprocal feedback between the PDZ binding kinase and androgen receptor drives prostate cancer. Oncogene. 2019 Feb;38(7):1136-1150.
Wedge DC et al. CRUK-ICGC Prostate Group (co-PI). Sequencing of prostate cancers identifies new cancer genes, routes of progression and drug targets. Nat Genet. 2018 May;50(5):682-692.
Nice FL, Massie CE, Klampfl T, Green AR. Determination of complex subclonal structures of hematological malignancies by multiplexed genotyping of blood progenitor colonies. Exp Hematol. 2018 Jan;57:60-64.e1.
Camacho N et al. CRUK-ICGC Prostate Group (co-PI). Appraising the relevance of DNA copy number loss and gain in prostate cancer using whole genome DNA sequence data. PLoS Genet. 2017 Sep 25;13(9):e1007001.
Smeets E, Lynch AG, Prekovic S, Van den Broeck T, Moris L, Helsen C, Joniau S, Claessens F, Massie CE.
The role of TET-mediated DNA hydroxymethylation in prostate cancer. Mol Cell Endocrinol 2017 pii: S0303-7207(17)30465-3.
Patel KM et al. Association Of Plasma And Urinary Mutant DNA With Clinical Outcomes In Muscle Invasive Bladder Cancer.
Sci Rep. 2017;7(1):5554.
Asim M et al. Synthetic lethality between androgen receptor signalling and the PARP pathway in prostate cancer.
Nat Commun. 2017; 8(1):374.
Camacho N et al. Appraising the relevance of DNA copy number loss and gain in prostate cancer using whole genome DNA sequence data. PLoS Genet. 2017;13(9):e1007001.
Mock A, Murphy S, Morris J, Marass F, Rosenfeld N, Massie C.
CVE: an R package for interactive variant prioritisation in precision oncology. BMC Med Genomics. 2017;10(1):37.
Massie CE, Mills IG, Lynch AG. The importance of DNA methylation in prostate cancer development.
J Steroid Biochem Mol Biol. 2016. pii: S0960-0760(16)30105-4.
Quandt D et al. Implementing liquid biopsies into clinical decision making for cancer immunotherapy. Oncotarget 2017;8(29):48507-48520.
Wan JC, Massie C et al. Liquid biopsies come of age: towards implementation of
circulating tumour DNA. Nat Rev Cancer. 2017;17(4):223-238.
Massie CE. Methods to Identify Chromatin-Bound Protein Complexes: From Genome-Wide to Locus-Specific Approaches.
Methods Mol Biol. 2016;1443:139-50.
Prostate ICGC UK Group. The evolutionary history of lethal metastatic prostate cancer.
Nature 2015; 520(7547):353-7.
Prostate ICGC UK Group. The Genetic Phylogeny of Multifocal Prostate Cancer.
Nature Genetics 2015; 47(4):367:72.
Massie CE, et al. HES5 silencing is an early and recurrent change in prostate tumourigenesis.
ERC. 2015; 22(2):131-44.
Asim M, Massie CE (joint first), et al. Choline Kinase Alpha as an Androgen Receptor Chaperone and Prostate Cancer Therapeutic Target.
J Natl Cancer Inst. 2015; 108(5).
Ortmann CA, Kent DG, et al. Effect of order on myeloproliferative neoplasms.
NEJM. 2015 372(7):601-12.
Shaw GL, et al. The Early Effects of Rapid Androgen Deprivation on Human Prostate Cancer.
Eur Urol. 2015 pii: S0302-2838(15)01076-3.
Ross-Adams H, Lamb AD, et al. Integration of copy number and transcriptomics provides risk stratification in prostate cancer.
EBioMedicine. 2015;2(9):1133-44.
Nangalia J, et al. DNMT3A mutations occur early or late in patients with myeloproliferative neoplasms and mutation order influences phenotype.
Haematologica. 2015;100(11):438-42.
Pertega-Gomes N, et al. Epigenetic and oncogenic regulation of SLC16A7 (MCT2) results in protein over-expression, impacting on signalling and cellular phenotypes in prostate cancer.
Oncotarget. 2015;6(25):21675-84.
Pertega-Gomes N, Felisbino S, Massie CE, et al. A glycolytic phenotype is associated with prostate cancer progression and aggressiveness.
J Pathol. 2015 Aug;236(4):517-30.
Chen E, Ahn JS, Massie CE, et al. JAK2V617F promotes replication fork stalling with disease-restricted impairment of the intra-S checkpoint response.
PNAS. 2014; 111(42):15190-5.
Ju YS, et al. Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer.
Elife. 2014 ;3. doi:10.7554/eLife.02935.
Tubio JM, et al. Mobile DNA in cancer. Extensive transduction of nonrepetitive DNA mediated by L1 retrotransposition in cancer genomes.
Science. 2014;345(6196):1251343.
Wong CC, et al. Inactivating CUX1 mutations promote tumorigenesis.
Nat Genet. 2014;46(1):33-8.
Godfrey AL, et al. Nongenetic stochastic expansion of JAK2V617F-homozygous subclones in polycythemia vera?
Blood. 2014;124(22):3332-4.
Zecchini V, et al. Nuclear ARRB1 induces pseudohypoxia and cellular metabolism reprogramming in prostate cancer.
EMBO J. 2014;33(12):1365-82.
Ramos-Montoya A, Lamb AD, et al. HES6 drives a critical AR transcriptional programme to induce castration-resistant prostate cancer through activation of an E2F1-mediated cell cycle network.
EMBO Mol Med. 2014;6(5):651-61.
Sharma NL, Massie CE (joint first), et al. The ETS family member GABPα modulates androgen receptor signalling and mediates an aggressive phenotype in prostate cancer.
Nucleic Acids Res. 2014;42(10):6256-69.
Wong CC, et al. Inactivating CUX1 mutations promote tumorigenesis.
Nat Genet. 2014;46(1):33-8.
Whitaker HC, et al. NAALADL2 is overexpressed in cancer and promotes a pro-migratory and pro-metastatic phenotype.
Oncogene. 2014;33(45):5274-87.
Lamb AD, Massie CE, Neal DE. The transcriptional programme of the androgen receptor (AR) in prostate cancer.
BJU Int. 2014;113(3):358-66.
Nangalia J, Massie CE (joint first), et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2.
NEJM. 2013 ;369(25):2391-405.
Sharma NL, Massie CE (joint first), et al. The androgen receptor induces a distinct transcriptional program in castration-resistant prostate cancer in man.
Cancer Cell. 2013;23(1):35-47.
Whitaker HC, et al. Peroxiredoxin-3 is overexpressed in prostate cancer and promotes cancer cell survival by protecting cells from oxidative stress.
B J Cancer. 2013;109(4):983-93.
Papaemmanuil E, et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts.
NEJM. 2011;365(15):1384-95.
Massie CE, et al. The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis.
EMBO J. 2011; 30(13):2719-33.
Massie CE, Mills IG. Global identification of androgen response elements.
Methods Mol Biol. 2011;776:255-73.
Ross-Innes CS, et al. Cooperative interaction between retinoic acid receptor-alpha and estrogen receptor in breast cancer.
Genes Dev. 2010 15;24(2):171-82.
Massie CE, Mills IG. Chromatin immunoprecipitation (ChIP) methodology and readouts.
Methods Mol Biol. 2009;505:123-37.
Attard G, Clark J, et al. Heterogeneity and clinical significance of ETV1 translocations in human prostate cancer.
Br J Cancer. 2008;99(2):314-20.
Massie CE, Mills IG. ChIPping away at gene regulation.
EMBO Rep. 2008; 9(4):337-43.
Vias M, Massie CE, et al . Pro-neural transcription factors as cancer markers.
BMC Med Genomics. 2008;1:17.
Ahmed AA, et al. The extracellular matrix protein TGFBI induces microtubule stabilization and sensitizes ovarian cancers to paclitaxel.
Cancer Cell. 2007; 12(6):514-27
Massie CE, et al. New androgen receptor genomic targets show an interaction with the ETS1 transcription factor.
EMBO Rep. 2007; 8(9):871-8.
Massie C, Mills IG. The developing role of receptors and adaptors.
Nat Rev Cancer. 2006; 6(5):403-9.
Stronach EA, et al. Identification of clinically relevant genes on chromosome 11 in a functional model of ovarian cancer tumor suppression.
Cancer Res. 2003;63(24):8648-55.
Cameron DA, Massie C, Kerr G, Leonard RC. Moderate neutropenia with adjuvant CMF confers improved survival in early breast cancer.
Br J Cancer. 2003; 89(10):1837-42.
Sellar GC, et al. OPCML at 11q25 is epigenetically inactivated and has tumor-suppressor function in epithelial ovarian cancer.
Nat Genet. 2003; 34(3):337-43.
Gourley C, Thornton C, Massie C, et al. Is there a relationship between HLA type and prognostic factors in breast cancer?
Anticancer Res. 2003;23(1B):633-8.