Selected publications
Rossi SH, Newsham I, Pita S, Brennan K, Park G, Smith CG, Lach RP, Mitchell T, Huang J, Babbage A, Warren AY, Leppert JT, Stewart GD, Gevaert O, Massie CE, Samarajiwa SA. Accurate detection of benign and malignant renal tumor subtypes with MethylBoostER: An epigenetic marker–driven learning framework. Science Advances 2022 Sep 28;8(39):eabn9828. https://doi.org/10.1126/sciadv.abn9828
Tuong ZK et al. Resolving the immune landscape of human prostate at a single-cell level in health and cancer. Cell Reports 2021 Dec 21;37(12):110132.
Liu S et al. Discovery of PTN as a serum-based biomarker of pro-metastatic prostate cancer. Br J Cancer. 2021 Mar;124(5):896-900.
Heider et al. ctDNA detection by personalised assays in early-stage NSCLC. medRxiv 2021.06.01.21258171; doi: https://doi.org/10.1101/2021.06.01.21258171
Wan et al (joint Senior Author). ctDNA monitoring using patient-specific sequencing and integration of variant reads. Sci Transl Med. 2020 Jun 17;12(548):eaaz8084.
ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature. 2020 Feb;578(7793):82-93.
Gnanapragasam VJ, Barrett T, Massie C, Pacey S, Warren A. Using prognosis to guide early detection and treatment selection in non-metastatic prostate cancer. BJU Int. 2019 Apr;123(4):562-563.
Dev H, Chiang TW, Lescale C, de Krijger I, Martin AG, Pilger D, Coates J, Sczaniecka-Clift M, Wei W, Ostermaier M, Herzog M. Shieldin complex promotes DNA end-joining and counters homologous recombination in BRCA1-null cells. Nature Cell Biology. 2018 Aug;20(8):954-65. https://doi.org/10.1038/s41556-018-0140-1
Mouliere F et al. Enhanced detection of circulating tumor DNA by fragment size analysis. Sci Transl Med. 2018 Nov 7;10(466):eaat4921.
Wan JC, Massie C et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA.
Nat Rev Cancer. 2017;17(4):223-238.
Massie CE, Mills IG, Lynch AG. The importance of DNA methylation in prostate cancer development.
JSBMB 2016. pii: S0960-0760(16)30105-4.
Prostate ICGC UK Group. The Genetic Phylogeny of Multifocal Prostate Cancer.
Nature Genetics 2015; 47(4):367:72.
Massie CE, et al. HES5 silencing is an early and recurrent change in prostate tumourigenesis.
ERC. 2015; 22(2):131-44.
Tuong ZK et al. Resolving the immune landscape of human prostate at a single-cell level in health and cancer. Cell Reports 2021 Dec 21;37(12):110132.
Liu S et al. Discovery of PTN as a serum-based biomarker of pro-metastatic prostate cancer. Br J Cancer. 2021 Mar;124(5):896-900.
Heider et al. ctDNA detection by personalised assays in early-stage NSCLC. medRxiv 2021.06.01.21258171; doi: https://doi.org/10.1101/2021.06.01.21258171
Wan et al (joint Senior Author). ctDNA monitoring using patient-specific sequencing and integration of variant reads. Sci Transl Med. 2020 Jun 17;12(548):eaaz8084.
ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature. 2020 Feb;578(7793):82-93.
Gnanapragasam VJ, Barrett T, Massie C, Pacey S, Warren A. Using prognosis to guide early detection and treatment selection in non-metastatic prostate cancer. BJU Int. 2019 Apr;123(4):562-563.
Dev H, Chiang TW, Lescale C, de Krijger I, Martin AG, Pilger D, Coates J, Sczaniecka-Clift M, Wei W, Ostermaier M, Herzog M. Shieldin complex promotes DNA end-joining and counters homologous recombination in BRCA1-null cells. Nature Cell Biology. 2018 Aug;20(8):954-65. https://doi.org/10.1038/s41556-018-0140-1
Mouliere F et al. Enhanced detection of circulating tumor DNA by fragment size analysis. Sci Transl Med. 2018 Nov 7;10(466):eaat4921.
Wan JC, Massie C et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA.
Nat Rev Cancer. 2017;17(4):223-238.
Massie CE, Mills IG, Lynch AG. The importance of DNA methylation in prostate cancer development.
JSBMB 2016. pii: S0960-0760(16)30105-4.
Prostate ICGC UK Group. The Genetic Phylogeny of Multifocal Prostate Cancer.
Nature Genetics 2015; 47(4):367:72.
Massie CE, et al. HES5 silencing is an early and recurrent change in prostate tumourigenesis.
ERC. 2015; 22(2):131-44.
Group Member's pubications
Liu S et al. Discovery of PTN as a serum-based biomarker of pro-metastatic prostate cancer. Br J Cancer. 2021 Mar;124(5):896-900.
Heider et al. ctDNA detection by personalised assays in early-stage NSCLC. medRxiv 2021.06.01.21258171; doi: https://doi.org/10.1101/2021.06.01.21258171
Sciacovelli et al. Nitrogen partitioning between branched-chain amino acids and urea cycle enzymes sustains renal cancer progression. bioRxiv 2021.09.17.460635; doi: https://doi.org/10.1101/2021.09.17.460635
Brennan K et al. Development of a DNA Methylation-Based Diagnostic Signature to Distinguish Benign Oncocytoma From Renal Cell Carcinoma. JCO Precis Oncol. 2020 Sep 28;4:PO.20.00015.
Bailey MH et al. PCAWG Consortium. Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples. Nat Commun. 2020 Sep 21;11(1):4748. .
Li CH et al. PCAWG Consortium. Sex differences in oncogenic mutational processes. Nat Commun. 2020 Aug 28;11(1):4330.
Wan et al (joint Senior Author). ctDNA monitoring using patient-specific sequencing and integration of variant reads. Sci Transl Med. 2020 Jun 17;12(548):eaaz8084.
Tran MGB et al. Independence of HIF1a and androgen signaling pathways in prostate cancer. BMC Cancer. 2020 May 25;20(1):469.
Smith CG et al. Comprehensive characterization of cell-free tumor DNA in plasma and urine of patients with renal tumors. Genome Med. 2020 Feb 28;12(1):23.
ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature. 2020 Feb;578(7793):82-93.
Gnanapragasam VJ, Barrett T, Massie C, Pacey S, Warren A. Using prognosis to guide early detection and treatment selection in non-metastatic prostate cancer. BJU Int. 2019 Apr;123(4):562-563.
Mouliere F et al. Enhanced detection of circulating tumor DNA by fragment size analysis. Sci Transl Med. 2018 Nov 7;10(466):eaat4921.
Mair R et al. Measurement of Plasma Cell-Free Mitochondrial Tumor DNA Improves Detection of Glioblastoma in Patient-Derived Orthotopic Xenograft Models. Cancer Res. 2019 Jan 1;79(1):220-230.
Grinfeld J et al. Classification and Personalized Prognosis in Myeloproliferative Neoplasms. N Engl J Med. 2018 Oct 11;379(15):1416-1430.
Warren AY, Massie CE, et al. A reciprocal feedback between the PDZ binding kinase and androgen receptor drives prostate cancer. Oncogene. 2019 Feb;38(7):1136-1150.
Wedge DC et al. CRUK-ICGC Prostate Group (co-PI). Sequencing of prostate cancers identifies new cancer genes, routes of progression and drug targets. Nat Genet. 2018 May;50(5):682-692.
Nice FL, Massie CE, Klampfl T, Green AR. Determination of complex subclonal structures of hematological malignancies by multiplexed genotyping of blood progenitor colonies. Exp Hematol. 2018 Jan;57:60-64.e1.
Camacho N et al. CRUK-ICGC Prostate Group (co-PI). Appraising the relevance of DNA copy number loss and gain in prostate cancer using whole genome DNA sequence data. PLoS Genet. 2017 Sep 25;13(9):e1007001.
Smeets E, Lynch AG, Prekovic S, Van den Broeck T, Moris L, Helsen C, Joniau S, Claessens F, Massie CE.
The role of TET-mediated DNA hydroxymethylation in prostate cancer. Mol Cell Endocrinol 2017 pii: S0303-7207(17)30465-3.
Patel KM et al. Association Of Plasma And Urinary Mutant DNA With Clinical Outcomes In Muscle Invasive Bladder Cancer.
Sci Rep. 2017;7(1):5554.
Asim M et al. Synthetic lethality between androgen receptor signalling and the PARP pathway in prostate cancer.
Nat Commun. 2017; 8(1):374.
Camacho N et al. Appraising the relevance of DNA copy number loss and gain in prostate cancer using whole genome DNA sequence data. PLoS Genet. 2017;13(9):e1007001.
Mock A, Murphy S, Morris J, Marass F, Rosenfeld N, Massie C.
CVE: an R package for interactive variant prioritisation in precision oncology. BMC Med Genomics. 2017;10(1):37.
Massie CE, Mills IG, Lynch AG. The importance of DNA methylation in prostate cancer development.
J Steroid Biochem Mol Biol. 2016. pii: S0960-0760(16)30105-4.
Quandt D et al. Implementing liquid biopsies into clinical decision making for cancer immunotherapy. Oncotarget 2017;8(29):48507-48520.
Wan JC, Massie C et al. Liquid biopsies come of age: towards implementation of
circulating tumour DNA. Nat Rev Cancer. 2017;17(4):223-238.
Massie CE. Methods to Identify Chromatin-Bound Protein Complexes: From Genome-Wide to Locus-Specific Approaches.
Methods Mol Biol. 2016;1443:139-50.
Prostate ICGC UK Group. The evolutionary history of lethal metastatic prostate cancer.
Nature 2015; 520(7547):353-7.
Prostate ICGC UK Group. The Genetic Phylogeny of Multifocal Prostate Cancer.
Nature Genetics 2015; 47(4):367:72.
Massie CE, et al. HES5 silencing is an early and recurrent change in prostate tumourigenesis.
ERC. 2015; 22(2):131-44.
Asim M, Massie CE (joint first), et al. Choline Kinase Alpha as an Androgen Receptor Chaperone and Prostate Cancer Therapeutic Target.
J Natl Cancer Inst. 2015; 108(5).
Ortmann CA, Kent DG, et al. Effect of order on myeloproliferative neoplasms.
NEJM. 2015 372(7):601-12.
Shaw GL, et al. The Early Effects of Rapid Androgen Deprivation on Human Prostate Cancer.
Eur Urol. 2015 pii: S0302-2838(15)01076-3.
Ross-Adams H, Lamb AD, et al. Integration of copy number and transcriptomics provides risk stratification in prostate cancer.
EBioMedicine. 2015;2(9):1133-44.
Nangalia J, et al. DNMT3A mutations occur early or late in patients with myeloproliferative neoplasms and mutation order influences phenotype.
Haematologica. 2015;100(11):438-42.
Pertega-Gomes N, et al. Epigenetic and oncogenic regulation of SLC16A7 (MCT2) results in protein over-expression, impacting on signalling and cellular phenotypes in prostate cancer.
Oncotarget. 2015;6(25):21675-84.
Pertega-Gomes N, Felisbino S, Massie CE, et al. A glycolytic phenotype is associated with prostate cancer progression and aggressiveness.
J Pathol. 2015 Aug;236(4):517-30.
Chen E, Ahn JS, Massie CE, et al. JAK2V617F promotes replication fork stalling with disease-restricted impairment of the intra-S checkpoint response.
PNAS. 2014; 111(42):15190-5.
Ju YS, et al. Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer.
Elife. 2014 ;3. doi:10.7554/eLife.02935.
Tubio JM, et al. Mobile DNA in cancer. Extensive transduction of nonrepetitive DNA mediated by L1 retrotransposition in cancer genomes.
Science. 2014;345(6196):1251343.
Wong CC, et al. Inactivating CUX1 mutations promote tumorigenesis.
Nat Genet. 2014;46(1):33-8.
Godfrey AL, et al. Nongenetic stochastic expansion of JAK2V617F-homozygous subclones in polycythemia vera?
Blood. 2014;124(22):3332-4.
Zecchini V, et al. Nuclear ARRB1 induces pseudohypoxia and cellular metabolism reprogramming in prostate cancer.
EMBO J. 2014;33(12):1365-82.
Ramos-Montoya A, Lamb AD, et al. HES6 drives a critical AR transcriptional programme to induce castration-resistant prostate cancer through activation of an E2F1-mediated cell cycle network.
EMBO Mol Med. 2014;6(5):651-61.
Sharma NL, Massie CE (joint first), et al. The ETS family member GABPα modulates androgen receptor signalling and mediates an aggressive phenotype in prostate cancer.
Nucleic Acids Res. 2014;42(10):6256-69.
Wong CC, et al. Inactivating CUX1 mutations promote tumorigenesis.
Nat Genet. 2014;46(1):33-8.
Whitaker HC, et al. NAALADL2 is overexpressed in cancer and promotes a pro-migratory and pro-metastatic phenotype.
Oncogene. 2014;33(45):5274-87.
Lamb AD, Massie CE, Neal DE. The transcriptional programme of the androgen receptor (AR) in prostate cancer.
BJU Int. 2014;113(3):358-66.
Nangalia J, Massie CE (joint first), et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2.
NEJM. 2013 ;369(25):2391-405.
Sharma NL, Massie CE (joint first), et al. The androgen receptor induces a distinct transcriptional program in castration-resistant prostate cancer in man.
Cancer Cell. 2013;23(1):35-47.
Whitaker HC, et al. Peroxiredoxin-3 is overexpressed in prostate cancer and promotes cancer cell survival by protecting cells from oxidative stress.
B J Cancer. 2013;109(4):983-93.
Papaemmanuil E, et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts.
NEJM. 2011;365(15):1384-95.
Massie CE, et al. The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis.
EMBO J. 2011; 30(13):2719-33.
Massie CE, Mills IG. Global identification of androgen response elements.
Methods Mol Biol. 2011;776:255-73.
Ross-Innes CS, et al. Cooperative interaction between retinoic acid receptor-alpha and estrogen receptor in breast cancer.
Genes Dev. 2010 15;24(2):171-82.
Massie CE, Mills IG. Chromatin immunoprecipitation (ChIP) methodology and readouts.
Methods Mol Biol. 2009;505:123-37.
Attard G, Clark J, et al. Heterogeneity and clinical significance of ETV1 translocations in human prostate cancer.
Br J Cancer. 2008;99(2):314-20.
Massie CE, Mills IG. ChIPping away at gene regulation.
EMBO Rep. 2008; 9(4):337-43.
Vias M, Massie CE, et al . Pro-neural transcription factors as cancer markers.
BMC Med Genomics. 2008;1:17.
Ahmed AA, et al. The extracellular matrix protein TGFBI induces microtubule stabilization and sensitizes ovarian cancers to paclitaxel.
Cancer Cell. 2007; 12(6):514-27
Massie CE, et al. New androgen receptor genomic targets show an interaction with the ETS1 transcription factor.
EMBO Rep. 2007; 8(9):871-8.
Massie C, Mills IG. The developing role of receptors and adaptors.
Nat Rev Cancer. 2006; 6(5):403-9.
Stronach EA, et al. Identification of clinically relevant genes on chromosome 11 in a functional model of ovarian cancer tumor suppression.
Cancer Res. 2003;63(24):8648-55.
Cameron DA, Massie C, Kerr G, Leonard RC. Moderate neutropenia with adjuvant CMF confers improved survival in early breast cancer.
Br J Cancer. 2003; 89(10):1837-42.
Sellar GC, et al. OPCML at 11q25 is epigenetically inactivated and has tumor-suppressor function in epithelial ovarian cancer.
Nat Genet. 2003; 34(3):337-43.
Gourley C, Thornton C, Massie C, et al. Is there a relationship between HLA type and prognostic factors in breast cancer?
Anticancer Res. 2003;23(1B):633-8.
Heider et al. ctDNA detection by personalised assays in early-stage NSCLC. medRxiv 2021.06.01.21258171; doi: https://doi.org/10.1101/2021.06.01.21258171
Sciacovelli et al. Nitrogen partitioning between branched-chain amino acids and urea cycle enzymes sustains renal cancer progression. bioRxiv 2021.09.17.460635; doi: https://doi.org/10.1101/2021.09.17.460635
Brennan K et al. Development of a DNA Methylation-Based Diagnostic Signature to Distinguish Benign Oncocytoma From Renal Cell Carcinoma. JCO Precis Oncol. 2020 Sep 28;4:PO.20.00015.
Bailey MH et al. PCAWG Consortium. Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples. Nat Commun. 2020 Sep 21;11(1):4748. .
Li CH et al. PCAWG Consortium. Sex differences in oncogenic mutational processes. Nat Commun. 2020 Aug 28;11(1):4330.
Wan et al (joint Senior Author). ctDNA monitoring using patient-specific sequencing and integration of variant reads. Sci Transl Med. 2020 Jun 17;12(548):eaaz8084.
Tran MGB et al. Independence of HIF1a and androgen signaling pathways in prostate cancer. BMC Cancer. 2020 May 25;20(1):469.
Smith CG et al. Comprehensive characterization of cell-free tumor DNA in plasma and urine of patients with renal tumors. Genome Med. 2020 Feb 28;12(1):23.
ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature. 2020 Feb;578(7793):82-93.
Gnanapragasam VJ, Barrett T, Massie C, Pacey S, Warren A. Using prognosis to guide early detection and treatment selection in non-metastatic prostate cancer. BJU Int. 2019 Apr;123(4):562-563.
Mouliere F et al. Enhanced detection of circulating tumor DNA by fragment size analysis. Sci Transl Med. 2018 Nov 7;10(466):eaat4921.
Mair R et al. Measurement of Plasma Cell-Free Mitochondrial Tumor DNA Improves Detection of Glioblastoma in Patient-Derived Orthotopic Xenograft Models. Cancer Res. 2019 Jan 1;79(1):220-230.
Grinfeld J et al. Classification and Personalized Prognosis in Myeloproliferative Neoplasms. N Engl J Med. 2018 Oct 11;379(15):1416-1430.
Warren AY, Massie CE, et al. A reciprocal feedback between the PDZ binding kinase and androgen receptor drives prostate cancer. Oncogene. 2019 Feb;38(7):1136-1150.
Wedge DC et al. CRUK-ICGC Prostate Group (co-PI). Sequencing of prostate cancers identifies new cancer genes, routes of progression and drug targets. Nat Genet. 2018 May;50(5):682-692.
Nice FL, Massie CE, Klampfl T, Green AR. Determination of complex subclonal structures of hematological malignancies by multiplexed genotyping of blood progenitor colonies. Exp Hematol. 2018 Jan;57:60-64.e1.
Camacho N et al. CRUK-ICGC Prostate Group (co-PI). Appraising the relevance of DNA copy number loss and gain in prostate cancer using whole genome DNA sequence data. PLoS Genet. 2017 Sep 25;13(9):e1007001.
Smeets E, Lynch AG, Prekovic S, Van den Broeck T, Moris L, Helsen C, Joniau S, Claessens F, Massie CE.
The role of TET-mediated DNA hydroxymethylation in prostate cancer. Mol Cell Endocrinol 2017 pii: S0303-7207(17)30465-3.
Patel KM et al. Association Of Plasma And Urinary Mutant DNA With Clinical Outcomes In Muscle Invasive Bladder Cancer.
Sci Rep. 2017;7(1):5554.
Asim M et al. Synthetic lethality between androgen receptor signalling and the PARP pathway in prostate cancer.
Nat Commun. 2017; 8(1):374.
Camacho N et al. Appraising the relevance of DNA copy number loss and gain in prostate cancer using whole genome DNA sequence data. PLoS Genet. 2017;13(9):e1007001.
Mock A, Murphy S, Morris J, Marass F, Rosenfeld N, Massie C.
CVE: an R package for interactive variant prioritisation in precision oncology. BMC Med Genomics. 2017;10(1):37.
Massie CE, Mills IG, Lynch AG. The importance of DNA methylation in prostate cancer development.
J Steroid Biochem Mol Biol. 2016. pii: S0960-0760(16)30105-4.
Quandt D et al. Implementing liquid biopsies into clinical decision making for cancer immunotherapy. Oncotarget 2017;8(29):48507-48520.
Wan JC, Massie C et al. Liquid biopsies come of age: towards implementation of
circulating tumour DNA. Nat Rev Cancer. 2017;17(4):223-238.
Massie CE. Methods to Identify Chromatin-Bound Protein Complexes: From Genome-Wide to Locus-Specific Approaches.
Methods Mol Biol. 2016;1443:139-50.
Prostate ICGC UK Group. The evolutionary history of lethal metastatic prostate cancer.
Nature 2015; 520(7547):353-7.
Prostate ICGC UK Group. The Genetic Phylogeny of Multifocal Prostate Cancer.
Nature Genetics 2015; 47(4):367:72.
Massie CE, et al. HES5 silencing is an early and recurrent change in prostate tumourigenesis.
ERC. 2015; 22(2):131-44.
Asim M, Massie CE (joint first), et al. Choline Kinase Alpha as an Androgen Receptor Chaperone and Prostate Cancer Therapeutic Target.
J Natl Cancer Inst. 2015; 108(5).
Ortmann CA, Kent DG, et al. Effect of order on myeloproliferative neoplasms.
NEJM. 2015 372(7):601-12.
Shaw GL, et al. The Early Effects of Rapid Androgen Deprivation on Human Prostate Cancer.
Eur Urol. 2015 pii: S0302-2838(15)01076-3.
Ross-Adams H, Lamb AD, et al. Integration of copy number and transcriptomics provides risk stratification in prostate cancer.
EBioMedicine. 2015;2(9):1133-44.
Nangalia J, et al. DNMT3A mutations occur early or late in patients with myeloproliferative neoplasms and mutation order influences phenotype.
Haematologica. 2015;100(11):438-42.
Pertega-Gomes N, et al. Epigenetic and oncogenic regulation of SLC16A7 (MCT2) results in protein over-expression, impacting on signalling and cellular phenotypes in prostate cancer.
Oncotarget. 2015;6(25):21675-84.
Pertega-Gomes N, Felisbino S, Massie CE, et al. A glycolytic phenotype is associated with prostate cancer progression and aggressiveness.
J Pathol. 2015 Aug;236(4):517-30.
Chen E, Ahn JS, Massie CE, et al. JAK2V617F promotes replication fork stalling with disease-restricted impairment of the intra-S checkpoint response.
PNAS. 2014; 111(42):15190-5.
Ju YS, et al. Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer.
Elife. 2014 ;3. doi:10.7554/eLife.02935.
Tubio JM, et al. Mobile DNA in cancer. Extensive transduction of nonrepetitive DNA mediated by L1 retrotransposition in cancer genomes.
Science. 2014;345(6196):1251343.
Wong CC, et al. Inactivating CUX1 mutations promote tumorigenesis.
Nat Genet. 2014;46(1):33-8.
Godfrey AL, et al. Nongenetic stochastic expansion of JAK2V617F-homozygous subclones in polycythemia vera?
Blood. 2014;124(22):3332-4.
Zecchini V, et al. Nuclear ARRB1 induces pseudohypoxia and cellular metabolism reprogramming in prostate cancer.
EMBO J. 2014;33(12):1365-82.
Ramos-Montoya A, Lamb AD, et al. HES6 drives a critical AR transcriptional programme to induce castration-resistant prostate cancer through activation of an E2F1-mediated cell cycle network.
EMBO Mol Med. 2014;6(5):651-61.
Sharma NL, Massie CE (joint first), et al. The ETS family member GABPα modulates androgen receptor signalling and mediates an aggressive phenotype in prostate cancer.
Nucleic Acids Res. 2014;42(10):6256-69.
Wong CC, et al. Inactivating CUX1 mutations promote tumorigenesis.
Nat Genet. 2014;46(1):33-8.
Whitaker HC, et al. NAALADL2 is overexpressed in cancer and promotes a pro-migratory and pro-metastatic phenotype.
Oncogene. 2014;33(45):5274-87.
Lamb AD, Massie CE, Neal DE. The transcriptional programme of the androgen receptor (AR) in prostate cancer.
BJU Int. 2014;113(3):358-66.
Nangalia J, Massie CE (joint first), et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2.
NEJM. 2013 ;369(25):2391-405.
Sharma NL, Massie CE (joint first), et al. The androgen receptor induces a distinct transcriptional program in castration-resistant prostate cancer in man.
Cancer Cell. 2013;23(1):35-47.
Whitaker HC, et al. Peroxiredoxin-3 is overexpressed in prostate cancer and promotes cancer cell survival by protecting cells from oxidative stress.
B J Cancer. 2013;109(4):983-93.
Papaemmanuil E, et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts.
NEJM. 2011;365(15):1384-95.
Massie CE, et al. The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis.
EMBO J. 2011; 30(13):2719-33.
Massie CE, Mills IG. Global identification of androgen response elements.
Methods Mol Biol. 2011;776:255-73.
Ross-Innes CS, et al. Cooperative interaction between retinoic acid receptor-alpha and estrogen receptor in breast cancer.
Genes Dev. 2010 15;24(2):171-82.
Massie CE, Mills IG. Chromatin immunoprecipitation (ChIP) methodology and readouts.
Methods Mol Biol. 2009;505:123-37.
Attard G, Clark J, et al. Heterogeneity and clinical significance of ETV1 translocations in human prostate cancer.
Br J Cancer. 2008;99(2):314-20.
Massie CE, Mills IG. ChIPping away at gene regulation.
EMBO Rep. 2008; 9(4):337-43.
Vias M, Massie CE, et al . Pro-neural transcription factors as cancer markers.
BMC Med Genomics. 2008;1:17.
Ahmed AA, et al. The extracellular matrix protein TGFBI induces microtubule stabilization and sensitizes ovarian cancers to paclitaxel.
Cancer Cell. 2007; 12(6):514-27
Massie CE, et al. New androgen receptor genomic targets show an interaction with the ETS1 transcription factor.
EMBO Rep. 2007; 8(9):871-8.
Massie C, Mills IG. The developing role of receptors and adaptors.
Nat Rev Cancer. 2006; 6(5):403-9.
Stronach EA, et al. Identification of clinically relevant genes on chromosome 11 in a functional model of ovarian cancer tumor suppression.
Cancer Res. 2003;63(24):8648-55.
Cameron DA, Massie C, Kerr G, Leonard RC. Moderate neutropenia with adjuvant CMF confers improved survival in early breast cancer.
Br J Cancer. 2003; 89(10):1837-42.
Sellar GC, et al. OPCML at 11q25 is epigenetically inactivated and has tumor-suppressor function in epithelial ovarian cancer.
Nat Genet. 2003; 34(3):337-43.
Gourley C, Thornton C, Massie C, et al. Is there a relationship between HLA type and prognostic factors in breast cancer?
Anticancer Res. 2003;23(1B):633-8.